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INTRODUCTION 

The recent  trend in microwave instruments is the use  of multiple millimeter and submillimeter wavelength bands. 
These systems are typically analyzed by using  physical optics, Gaussian  beams or ray tracing techniques. Physical 
optics offers high accuracy at the expense of computation time. This trade-off becomes particularly apparent in the 
analysis of multiple reflector antennas, such as beam  waveguide antennas, where  physical optics is used to compute the 
current  on  each  reflector  fiom the current  on the previous reflector. At the other  end  of the spectrum is ray  tracing 
approaches that  ignore difhction effects  entirely.  These methods are fast but  sacrifice the ability to predict some  e&c& 
accurately. 

An intermediate approach is to use an appropriate set of expansion functions to model the field  between the reflectors. E 
the set is  chosen wisely only a few coefficients  need to be determined fkom  each reflector current. The field  is  then 
computed at the next reflector through the  use of the expansion functions  and their coefficients  rather than by using the 
previous reflector current. For a beam  waveguide  system  with  no enclosing tubes an excellent set of expansion functions 
is the Gaussian beam mode set. In  many  cases a preliminary design which  includes the effects on difbction may be 
obtained by considering only the fundamental mode and a thin lens model for the reflectors. Higher-order'modes are 
included to model the effects  of the curved  reflector,  which include asymmetric distortion of the beam, cross 
polarization, and  beam truncation. 

This paper  describes a computer code implementing higher-order  Gaussian  beam scattering by multiple reflector 
systems. Examples will compare results from the Gaussian beam approach to pure physical optics. 

ALGORITHM 

A computer program has been  written to solve the  problem of higher-order Gaussian  beam scattering by an arbitrary set 
of reflectors. The problem geometry is depicted in Fig. 1. The steps involved in the solution are as follows: 
(1) Compute the current on the first reflector using  physical optics. The  incident magnetic field is provided either by 

a feed  model or by  an incident set of Gaussian beam  modes. 
(2) Compute the direction of propagation for the reflected Gaussian beam-set  using  ray tracing. Using a gut ray in the 

input direction specified by the feed coordinate system or by the input Gaussian  beam set propagation direction 
and the reflector surface description compute the gut ray  direction for the output Gaussian beam set. 

(3) Next the waist size and location for the output beam set is  found  by examining the amplitude and  phase 
distribution of the current  on the reflector, as described  below. Essentially, the waist and radius of  curvature of 
the output beam set at the reflector  are estimated. From these two quantities the beam waist and its location 
along the output gut ray direction are determined. 

(4) Having determined the size of the waist and  its  location all that  remains is to find the amplitudes of  the 
individual modes in the output mode set. This is  accomplished through the use of the reciprocity theorem. A 
calculation of an  interaction  integral of the  mode in question  and  the  reflector  current is required. 

(5) Steps (lH4) are  then  repeated  for  each  addition  reflector in  the chain. In each of these cases the input field  for  the 
current calculation is provided by the previous Gaussian  beam set. 

DETERMINATION OF OUTPUT BEAM SET PARAMETERS 

One of the key steps in computing scattering of  Gaussian beam mode sets by arbitrary  reflector is the determination of 
the best choice for the output beam set's waist and its location. The problem is depicted in Fig. 2, where win and li, are 
the input waist and  location and w,, and I,, are the same parameters for the output beam set. Once these parameters are 
determined computation of the mode amplitudes from  the  current on the reflector follows easily. The  steps followed  in 
the computer code are as follows: 
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Fig. 1. Problem Geometry 

Fig. 2. Field Matching Approach for Determining Output Beam Parameters 

(1) Compute a waist at the reflector, denoted as Wmuch.  When  the  input to the reflector is a Gaussian beam mode set 
the input waist is simply computed at the point of impact  on the reflector.  When the input to the reflector  is  a 
feed an estimate of the waist is determined  from  the  reflector  current.  The output beam set is  required to produce 



a waist equal to Wmarch at the point  of  impact. This provides one of  the two equations needed to compute the 
output beam set parameters. 

(2) Next a suitable set of points on  the  reflector  to  be  used  for  field  matching or path-length matching is derived. 
These points are generally chosen to be within a waist of the  point of impact. 

(3) Next one of two approaches is  used  to determine the best  value for L t .  

Approach 1: Field  Matching 
(1) Compute the incident field at each  of the match points chosen above. These  field values are either determined 

from the incident beam set or the  feed field. 
(2) Using these fields and the known direction of the output beam set search I, for an optimum, defined to be  where 

a best-fit match of the reflector  fields  to the fhdamental mode of the output mode set is obtained. In general 
multiple minima are found and  the absolute minimum is  chosen.  It can  be shown that the allowable values fix 
I, are bounded, 

Approach 2: Geometrical Optics Determination of Output  Radius of Curvature 
(1) Compute a phase center location for the input fields. For a Gaussian  beam mode set this is determined fiom the 

input radius of curvature at the  point of impact. For a feed input the phase center is assumed to  be at the origin c f  
the feed coordinate system. 

(2) Using the set of points on the reflector compute the set of  path lengths from the input phase center  each point, 
Fig. 3.  

(3) Search for the output phase center (output radius of curvature), sweeping  along the direction of the output ray. A 
minimum in the spread of the total  path lengths f?om input phase  center to reflector and then to output phase 
center is sought. Generally a single minimum is found either in fiont of or behind the reflector. 

(4) Using the output radius of curvature  and the required  waist  at  the  reflector compute the waist size and location c f  
the output beam set. 

COMPUTATION OF MODE AMPLITUDES USING THE RECIPROCITY THEOREM 

The approach for determining the amplitudes of the Gaussian beam modes directly fiom the reflector  current is 
summarized. It should be noted that two approximations are necessary, (1) the reflector  current  is approximated to be 

Fig. 3.  Ray  Optics Approach for  Determining Output Beam Parameters 



the physical optics current, a good approximation  for  large  reflectors  with low edge illumination, and (2) the Gaussian 
beam modes are solutions to Maxwell’s equations in free space, never true  but a good approximation if the mode fields 
are required only in the  paraxial  region.  The Gaussian beam modes  used are given in terms of  Laguerre polynomials as 
described by Goldsmith, [ I ] .  Each  mode  has a polarization, either ‘x’, or ‘y’, a radial index, p, and an azimuthal index 
m. 

For two arbitrary fields and their associated sources, denoted by “A”, and “B”, the reciprocity theorem when applied to 
an arbitrary volume, V, and its enclosing surface S, may  be stated as follows: 

~ ~ ( E , ~ ~ B - ~ B X F ~ , ) . ~ = ~ J ~ ( ~ B . J . - B . . ~ A - ~ A . . ’ . + ~ A . ~ B )  dv. (2) 
S V 

A half-space completely enclosing the reflector is chosen as V, with the d a c e  S perpendicular to the direction d 
propagation for the output beam set. For this particular application we  choose the output Gaussian mode set, with 
unknown mode amplitudes, as the “A” field with the reflector  current inside the volume being its source. As the “B” 
field  we choose a test field, the conjugate of the ith Gaussian  beam  mode  now propagating toward the reflector. The 
source for this field are chosen to be  outside the volume V. 
We have then for the fields, 

Using the reciprocity theorem  and the orthogonality condition for the Gaussian beam modes on the infinite surface S,  
we  can  obtain the desired equation for the  unknown  coefficients, 

Example Calculation 
A comparison of a full Physical Optics calculation and the Gaussian Beam Analysis fw the output of a 448 GHz seven 
mirror radiometer is shown in Fig. 4. The 7-mirror system consisted of a Potter horn  on the input with an ellipse, flat 
mirrors and a parabola to direct and shape the output beam. The computation time for the Physical Optics program was 
8 hours on a 200 MHz Pentium and less than 5 minutes for the Gaussian Beam Analysis. 
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Fig. 4. Comparison of Physical Optics and Gaussian Beam Analysis 


